
Single lead mobile ECG machine

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DIPLOMA

IN

Electical Engineering

Submitted by:

SUDIPTA SEN(D222322587)

TANIMA GHOSH(D222322596)

RAJU ADHIKARY(D222322568)

GOUTAM AMBALI(D202116553)

RUMA MANDI(D222322574)

Under the guidance of

Lec.(Mr.) SOUVIK BAG

DEPT. OF ELECTRICAL ENGINEERING

RANAGHAT GOVERNMENT POLYTECHNIC

Ranaghat, Nadia-741201

DEC 2024

DEPT. OF ELECTRICAL ENGINEERING

RANAGHAT GOVERNMENT POLYTECHNIC

Ranaghat, Nadia-741201

CANDIDATE’S DECLARATION

We, SUDIPTA SEN (D222322587), TANIMA GHOSH (D222322596), RAJU ADHIKARY

(D222322568), GOUTAM AMBALI (D202116553) & RUMA MANDI (D222322574) stu-

dents of Diploma (ELECTRICAL ENGINEERING), hereby declare that the Project Dis-

sertation titled – “Single lead mobile ECG machine” which is submitted by us to the

Department of Electical Engineering, RANAGHAT GOVERNMENT POLYTECHNIC,

West Bengal in fulfillment of the requirement for awarding of Diploma, is not copied from

any source without proper citation. This work has not previously formed the basis for

the award of any Diploma or other similar title or recognition in our institute.

Place: West Bengal

Date: 2024-12-11

SUDIPTA SEN

(D222322587)

TANIMA GHOSH

(D222322596)

RAJU ADHIKARY

(D222322568)

GOUTAM AMBALI

(D202116553)

RUMA MANDI

(D222322574)

DEPT. OF ELECTRICAL ENGINEERING

RANAGHAT GOVERNMENT POLYTECHNIC

Ranaghat, Nadia-741201

CERTIFICATE

I hereby certify that the Project titled ”Single lead mobile ECG machine” which is

submitted by SUDIPTA SEN (D222322587), TANIMA GHOSH (D222322596), RAJU

ADHIKARY (D222322568), GOUTAM AMBALI (D202116553) & RUMA MANDI

(D222322574) for fulfillment of the requirements for awarding of the Diploma is a record

of the project work carried out by the students under my guidance & supervision. To the

best of my knowledge, this work has not been submitted in any part or fulfillment for any

Degree or Diploma to this Institute or elsewhere.

Place : West Bengal

Date : 2024-12-11

Lec.(Mr.) SOUVIK BAG

(SUPERVISOR)

Lecturer

Department of ELECTRICAL ENGINEERING

RANAGHAT GOVERNMENT POLYTECHNIC

ii

ABSTRACT

Keywords - Portable ECG, Low-Cost Healthcare Technology, Rural Health Diagnos-

tics

This project presents a cost-effective, portable, single-lead ECG (Electrocardiogram)

machine designed to meet essential cardiac monitoring needs, particularly in underserved

rural or remote areas. Multi-lead ECG machines are often costly and complex, limiting

accessibility and usability in such settings. Our single-lead ECG device focuses on afford-

ability, ease of use, and mobility without compromising essential diagnostic functionality.

The proposed system leverages bioinstrumentation amplifiers, precision filters, and a

DIY digital storage oscilloscope (DSO) to capture, amplify, and visualize ECG signals.

Using Wi-Fi-enabled technology, this prototype also supports data transfer and remote

monitoring capabilities. Through systematic design and practical implementation, this

project successfully demonstrates real-time ECG signal processing with a user-friendly

interface.

In future iterations, we aim to integrate AI-driven health analytics, enhanced wire-

less capabilities, and expanded outreach for rural healthcare initiatives. This project

underscores the potential of affordable healthcare technology to improve access to vital

diagnostic tools, addressing a critical gap in global health equity.

iii

ACKNOWLEDGEMENT

The successful completion of any task is incomplete and meaningless without giving any

due credit to the people who made it possible without which the project would not have

been successful and would have existed in theory.

First and foremost, we are grateful to Mr. Achanchal Kundu, HOD, Department

of Electical Engineering, RANAGHAT GOVERNMENT POLYTECHNIC, and all other

faculty members of our department for their constant guidance and support, constant

motivation and sincere support and gratitude for this project work. We owe a lot of thanks

to our supervisor, Mr. Souvik Bag, Lecturer, Department of Electical Engineering,

RANAGHAT GOVERNMENT POLYTECHNIC for igniting and constantly motivating

us and guiding us in the idea of a creatively and amazingly performed Major Project in

undertaking this endeavor and challenge and also for being there whenever we needed his

guidance or assistance.

We would also like to take this moment to show our thanks and gratitude to one and

all, who indirectly or directly have given us their hand in this challenging task. We feel

happy and joyful and content in expressing our vote of thanks to all those who have helped

us and guided us in presenting this project work for our Major project. Last, but never

least, we thank our well-wishers and parents for always being with us, in every sense and

constantly supporting us in every possible sense whenever possible.

SUDIPTA SEN

(D222322587)

TANIMA GHOSH

(D222322596)

RAJU ADHIKARY

(D222322568)

GOUTAM AMBALI

(D202116553)

RUMA MANDI

(D222322574)

iv

Contents

Candidate’s Declaration i

Certificate ii

Abstract iii

Acknowledgement iv

List of Figures vi

List of Symbols, Abbreviations vii

1 INTRODUCTION 1

2 BACKGROUND 2

3 PROPOSED DESIGN 4

3.1 ELECTRODES 4

3.2 AMPLIFIER 5

3.3 NOISE & FILTER 5

3.4 DSO 6

3.5 WIFI 6

4 Software Development 7

Microcontroller programming Algorithm 7

Web Development Algorithm 8

5 Implementation and Results 9

6 Future Scope 10

6.1 Artificial Intelligence (AI) Features 10

v

6.2 Multi-Lead ECG Option 10

6.3 Improving Signal Quality 10

6.4 Data Logging 11

6.5 Remote Monitoring 11

6.6 Customizable Features 11

6.7 Support for Rural Healthcare Programs 11

7 CONCLUSION 12

Appendices 13

References 24

List of Figures

2.1 The electrical conduction system of the heart 2

2.2 Normal ECG signal pattern 3

2.3 Traditional Hospital ECG Machine 3

3.1 ECG block diagram 4

3.2 DIY reusable electrodes 5

3.3 AD8232 block diagram [2] 5

3.4 DSO block diagram 6

5.1 Project Prototype, implemented the entire circuit inside the box 9

5.2 User interface with Project result or output 9

vi

LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE

ECG : Electrocardiogram

EEG : Electroencephalogram

CVDs : Cardiovascular Diseases

DIY : Do It Yourself

AD8232 : Bioinstrumentation Amplifier

DSO : Digital Storage Oscilloscope

MCU : Microcontroller Unit

Wi-Fi : Wireless Fidelity

HTTP : Hypertext Transfer Protocol

UI : User Interface

API : Application Programming Interface

ESP8266 : Wi-Fi Module

RC Filter : Resistor-Capacitor Filter

DNS : Domain Name System

IoT : Internet of Things

Technical Terms and Concepts

Bioinstrumentation : Application of electronics and measurement techniques for

physiological data.

Signal Amplification : Increasing the amplitude of ECG signals.

Baseline Wander : Low-frequency noise caused by body movements or respiration.

vii

Electromagnetic Interference (EMI) : Disturbances from external electromag-

netic sources.

WebSocket Protocol : Real-time full-duplex communication channel.

Telemedicine : Technology-based remote medical diagnostics and monitoring.

Graphical User Interface (GUI) : Visual interface for user interaction.

Sinoatrial Node : The natural pacemaker of the heart.

Real-Time Visualization : Instant display of ECG signals for analysis.

Motion Artifacts : Signal distortions caused by physical movements.

Design Elements

Spiral Copper Electrodes : Custom reusable electrodes for ECG acquisition.

Low-Cost Healthcare Technology : Affordable solutions for underserved areas.

Noise Filtering : Removing unwanted signals from ECG data.

Single-Lead ECG : Measuring electrical activity from one point on the body.

Precision Filters : High-pass and low-pass filters for signal processing.

Wireless Data Transmission : Sending ECG data via Wi-Fi.

Voltage Per Division (Volt/Div) : Scaling unit for voltage on an oscilloscope.

Time Per Division (Time/Div) : Scaling unit for time on an oscilloscope.

Advanced and Future Concepts

AI-Driven Analytics : Artificial Intelligence for automated diagnostics.

Health Equity : Ensuring equal access to medical resources.

Signal Processing : Techniques for improving signal quality.

Remote Monitoring : Analyzing health data from a distance.

Data Visualization Algorithms : Computational methods for graphical data

display.

viii

Chapter 1

INTRODUCTION

In today’s world, cardiovascular diseases (CVDs) are one of the leading causes of mortality,

claiming millions of lives every year. Early detection and timely monitoring of heart health

are crucial for managing these conditions effectively. However, in many rural and remote

areas, access to advanced healthcare facilities is limited, leaving a significant portion of the

population at risk of undiagnosed heart conditions. Traditional multi-lead ECG machines,

while effective, are expensive, bulky, and require trained professionals to operate [3]. These

challenges create a pressing need for an affordable, portable, and easy-to-use solution that

can bring basic cardiac monitoring to the doorstep of every individual.

Imagine a scenario: A middle-aged farmer working in a rural area experiences occa-

sional chest discomfort but dismisses it due to lack of access to medical facilities. One day,

he suffers a major heart event because his condition went undetected for years. This is not

just an isolated case but a recurring reality in underserved regions. What if there was a

device that could have detected his heart condition earlier, allowing timely intervention?

This project aims to address this critical gap by developing a single-lead, portable ECG

machine. Our solution is compact, cost-effective, and user-friendly, making it ideal for

rural and low-resource settings. The device is built using innovative DIY techniques, such

as custom spiral copper wire electrodes, and powered by the AD8232 bioinstrumentation

amplifier for reliable signal processing [1]. The ESP8266 module enables wireless data

transmission to any Wi-Fi-enabled device, offering a seamless user experience.

Unlike traditional ECG systems, this project focuses on simplicity without compro-

mising on diagnostic capabilities. The captured ECG data is displayed on a web interface

in real-time, making it accessible to both healthcare professionals and individuals for per-

sonal monitoring. With its focus on affordability, mobility, and functionality, this device

has the potential to revolutionize cardiac care in rural areas, promoting better health

outcomes.

1

Chapter 2

BACKGROUND

The heart is mainly a muscle that requires a stimulus in order to beat and pump blood into

the body. This stimulus comes in the form of electric pulses emitted by the sinoatrialnode,

a grouping of specialised cells located in the top right hand corner of the heart. Pulses

are produced periodically thus maintaining the beating of the heart. They can, - as it

will be explained later in the report - if captured and plotted,help physicians diagnose

the heart they originated from. The Electrocardiogram fulfils this purpose and has been

used to do so for more than a century.

Figure 2.1: The electrical conduction system of the heart

The electrical pulse generated has a unique pattern (seen in Figure 2.2), it includes

many significant waves that concern different parts of the heart [5].

2

Figure 2.2: Normal ECG signal pattern

Multi-lead ECG machines are commonly used in medical settings but have notable

limitations for rural healthcare. They are not only costly but also complex to oper-

ate, maintain, and interpret. This complexity, combined with high expenses, restricts

accessibility in rural or remote areas where resources and trained personnel are scarce.

Recognizing these barriers, our project focuses on creating a simplified, single-lead ECG

device that can make essential cardiac monitoring accessible to everyone.

Figure 2.3: Traditional Hospital ECG Machine

3

Chapter 3

PROPOSED DESIGN

After having completed the background research on the type of signal that will have to

be picked up by the ECG monitor to be built, it was decided that the project’s ECG

monitor would be a two or three electrode ECG powered by one 3.7 V battery. A few

design specifications were set in order to ensure proper ECG signal sampling.

Figure 3.1: ECG block diagram

3.1 ELECTRODES

To reduce costs and improve accessibility, we designed custom electrodes using copper

wires bent into a spiral shape (see in Figure 3.2) approximately the size of a finger.

This spiral structure ensures adequate skin contact, allowing for stable electrical signal

acquisition. These DIY electrodes are reusable, simple to construct, and effective for

single-lead ECG applications.

4

Figure 3.2: DIY reusable electrodes

3.2 AMPLIFIER

We use the AD8232 [2] bioinstrumentation amplifier, a reliable choice for portable ECG

devices. This amplifier is designed to capture the heart’s weak electrical signals and

amplify them for accurate processing. It offers high precision, low power consumption,

and effective signal enhancement, making it suitable for mobile applications where battery

efficiency and signal clarity are crucial.

Figure 3.3: AD8232 block diagram [2]

3.3 NOISE & FILTER

Noise in the ECG system can originate from multiple sources, such as electromagnetic

interference from power lines, motion artifacts due to user movement, and baseline wander

5

caused by respiration. The AD8232 module integrates built-in filters to address high-pass

and low-pass noise, reducing complexity. For additional filtering, an RC filter can be

added at critical stages to further attenuate power line noise or other interference [8].

3.4 DSO

We have implemented a DIY Digital Storage Oscilloscope using the ESP8266 [4] micro-

controller with WiFi capabilities. This module captures the processed ECG signal and

allows for real-time visualization in any of your wifi enabled device. Unlike traditional

DSOs, this DIY approach is cost-effective, compact, and customizable. The ESP8266’s

WiFi functionality also supports remote monitoring, enabling healthcare providers to view

ECG data without physical contact—a significant advantage for rural and telemedicine

applications.

Figure 3.4: DSO block diagram

3.5 WIFI

The ESP8266 [4] MCU provides built-in Wi-Fi connectivity for transmitting ECG data

to nearby devices. The system take advantage of HTTP or WebSocket protocols for

efficient real-time data streaming. This ensures users can view ECG signals wirelessly on

a smartphone, PC or any other wifi enabled device with working browser, enabling mobile

diagnostics.

6

Chapter 4

Software Development

Capture analog ECG signals in MCU, process them, and transmit data wirelessly to a

user interface maybe a webpage for real-time visualization [6].

Algorithm 1 Microcontroller programming Algorithm
1: Initialize:
2: Initialize Serial Communication for debugging
3: Initialize Wi-Fi as Access Point
4: Configure DNS Server
5: Configure WebSocket Server
6: Configure Web Server Routes
7: while True do
8: Handle WebSocket Events:
9: if Message Type = WStype_TEXT then

10: Extract message data
11: Parse the message
12: Collect sensor readings
13: Prepare and send response to client
14: end if
15: if Message Type = WStype_CONNECTED then
16: Log connection details
17: end if
18: if Message Type = WStype_DISCONNECTED then
19: Log disconnection details
20: end if
21: end while

7

Algorithm 2 Web Development Algorithm (User Interface)
1: Initialize:
2: Initialize an empty buffer data_buffer with a predefined size (e.g., 2000)
3: Set up WebSocket connection to receive incoming data from the MCU [7]
4: On WebSocket Connection Open:
5: Display success notification ”Connection established!”
6: Send a signal (1) to the WebSocket server to request data
7: On Receiving Data:
8: Parse the incoming data
9: Append the received data to data_buffer

10: Trim the data_buffer to maintain a fixed length (e.g., the number of elements
corresponding to the canvas width)

11: Send a signal (200) to the server indicating successful data reception
12: Auto Scale Function:
13: Calculate the scale factor for voltage (volt_per_div) using the difference between

the maximum and minimum values in data_buffer
14: Adjust the vertical position (positionY) to center the data values in the middle of

the canvas
15: Update the UI with the new scale factor and position values
16: Graph Drawing Loop:
17: Clear the canvas area to prepare for a new drawing
18: Call the function to draw graph axes
19: Begin plotting the graph:
20: For each point in data_buffer:
21: Calculate the corresponding x and y coordinates on the canvas based on the

time per division (time_per_div) and voltage per division (volt_per_div)
22: Plot the calculated point on the canvas
23: End the line when the graph reaches the end of the canvas
24: Draw Graph Axes:
25: Draw horizontal and vertical grid lines based on the time and voltage divisions
26: Label the axes with appropriate markers (e.g., time and voltage values)
27: Resize Event Handling:
28: Adjust the canvas width and reset the data buffer size based on the screen width
29: Touch Event Handling:
30: Track touch input on the canvas and update the pointer position based on user

interaction (for example, tracking voltage or time)
31: Notification System:
32: Display WebSocket status notifications (success, error, warning) with appropriate

colors and auto-hide functionality

8

Chapter 5

Implementation and Results

Figure 5.1: Project Prototype, implemented the entire circuit inside the box

Figure 5.2: User interface with Project result or output

9

Chapter 6

Future Scope

The portable single-lead ECG machine is a big step toward making heart health check-ups

available to everyone, especially in areas where healthcare is hard to access. While the

current design works well for basic monitoring, there is a lot of room to improve and add

new features in the future. Below are some ideas for what could be done next:

6.1 Artificial Intelligence (AI) Features

Adding AI to the device can help it automatically detect heart problems like irregular

heartbeats. Using machine learning models as discussed in previous research [5], this

feature would make the device useful even for people who don’t have medical training.

6.2 Multi-Lead ECG Option

Right now, the machine uses a single lead, which works for basic monitoring. In the

future, it can be upgraded to include more leads, which would make it better for detailed

heart check-ups and more complex diagnoses [3].

6.3 Improving Signal Quality

The ECG machine can be improved by using advanced filtering techniques to reduce

noise, such as motion artifacts or interference from other electrical devices. Techniques

like precision filters and real-time noise reduction [8] would help provide clearer and more

accurate heart signals for analysis.

10

6.4 Data Logging

Adding a data logging feature would allow users to save their ECG recordings for future

reference. This could help doctors track a patient’s heart health over time and identify

any long-term changes. Data storage capabilities using IoT modules like ESP8266 have

been explored in similar devices [4].

6.5 Remote Monitoring

This machine could be connected to telemedicine apps so doctors can monitor patients

from far away in real time. This feature aligns with global trends in telemedicine [3],

enabling quicker responses to emergencies and better care for rural populations.

6.6 Customizable Features

The device could include options for users to adjust the settings based on their needs,

such as monitoring for children or older adults. A user-friendly interface, as implemented

in this project, could be further refined to suit a wider range of users [?].

6.7 Support for Rural Healthcare Programs

Working with organizations and governments, this device could be made available to more

people in remote areas. This would help ensure that everyone, no matter where they live,

can check their heart health easily. Affordable healthcare technologies, like this ECG

machine, have a proven impact on improving health equity [1].

These improvements would make the single-lead ECG machine even more useful and

impactful, helping more people take care of their heart health in a simple and affordable

way.

11

Chapter 7

CONCLUSION

The development of a portable, single-lead ECG machine demonstrates the potential

for affordable and accessible cardiac monitoring solutions, particularly for underserved

rural and remote areas. By utilizing custom-built spiral copper electrodes, the AD8232

bioinstrumentation amplifier, and the ESP8266 Wi-Fi module, the project successfully

achieves real-time ECG signal acquisition, processing, and wireless data transmission.

The integration of a user-friendly web interface for ECG visualization ensures that

the system is practical and convenient for non-specialist users. Field testing has shown

that the device performs reliably, with comparable accuracy to standard ECG machines,

while significantly reducing costs. This prototype bridges a critical gap in rural healthcare

by providing an essential diagnostic tool for early detection and management of cardiac

conditions.

Future enhancements could include the incorporation of multi-lead functionality, AI-

driven data analysis, and extended battery life. This project highlights the significant

impact that low-cost healthcare technologies can have on improving global health equity.

12

Appendix

Microcontroller program

1 #include <string>
2

3 #include <DNSServer.h>
4 #include <WebSocketsServer.h>
5 #include <ESP8266WebServer.h>
6

7 #define USE_SERIAL Serial
8

9 const byte DNS_PORT = 53;
10 IPAddress apIP(172, 217, 28, 1);
11 DNSServer dnsServer;
12 ESP8266WebServer server(80);
13 WebSocketsServer webSocket = WebSocketsServer(81);
14

15

16 // ADC buffer and indexing variables
17 int *adcBuffer = nullptr; // Dynamic buffer pointer
18 int sampleIndex = 0;
19 int sps = 10; // Default samples per second
20 unsigned long previousMillis = 0;
21 const long sendInterval = 333; // Time interval to send data (333ms)
22

23 unsigned long lastSampleTime = 0; // Time of last sample
24 long sampleInterval = 1000 / sps; // Interval between each sample based on

SPS
25

26

27 String webServerIndexPage = "<WEB UI CODE>";
28

29 void webSocketEvent(uint8_t num, WStype_t type, uint8_t* payload, size_t
length) {

30

31 switch (type) {
32 case WStype_DISCONNECTED:
33 USE_SERIAL.printf("[%u] Disconnected!\n", num);

13

34 break;
35 case WStype_CONNECTED:
36 {
37 IPAddress ip = webSocket.remoteIP(num);
38 USE_SERIAL.printf("[%u] Connected from %d.%d.%d.%d url: %s\n",

num, ip[0], ip[1], ip[2], ip[3], payload);
39 }
40 break;
41 case WStype_TEXT:
42 USE_SERIAL.printf("[%u] get Text: %s\n", num, payload);
43

44 //int arrayLen = payload - 0;
45 int newSps = atoi((const char*)payload);
46

47 // Try to parse the samples per second (SPS) from the message
48 if (newSps > 0 && newSps != sps) {
49 // Adjust the number of samples per second if needed
50 sps = newSps;
51

52 // Reallocate the ADC buffer with the new size
53 if (adcBuffer != nullptr) {
54 free(adcBuffer); // Free old buffer
55 }
56 adcBuffer = (int *)malloc(sps * sizeof(int)); // Allocate new

buffer
57

58 // Update sampling interval based on SPS
59 sampleInterval = 1000 / sps;
60

61 Serial.print("New SPS: ");
62 Serial.println(sps);
63 }
64

65

66 break;
67 }
68 }
69

70 void handleNotFound() {
71 server.sendHeader("Location", "/", true); //Redirect to our html web

page
72 server.send(301, "text/plane", "");
73 }
74

75

76 void setup() {

14

77 USE_SERIAL.begin(115200);
78

79 //USE_SERIAL.setDebugOutput(true);
80

81 USE_SERIAL.println();
82 USE_SERIAL.println();
83 USE_SERIAL.println();
84

85 for (uint8_t t = 4; t > 0; t--) {
86 USE_SERIAL.printf("[SETUP] BOOT WAIT %d...\n", t);
87 USE_SERIAL.flush();
88 delay(1000);
89 }
90 WiFi.mode(WIFI_AP);
91 WiFi.softAPConfig(apIP, apIP, IPAddress(255, 255, 255, 0));
92 WiFi.softAP("RANMPGroupF");
93

94 // start webSocket server
95 webSocket.begin();
96 webSocket.onEvent(webSocketEvent);
97

98 dnsServer.start(DNS_PORT , "*", apIP);
99

100 // handle index
101 server.on("/", []() {
102 server.send(200, "text/html", webServerIndexPage);
103 });
104 server.onNotFound(handleNotFound);
105

106 server.begin();
107 }
108

109 unsigned long last_10sec = 0;
110 unsigned int counter = 0;
111

112 void loop() {
113 unsigned long t = millis();
114 webSocket.loop();
115 dnsServer.processNextRequest();
116 server.handleClient();
117

118 if ((t - last_10sec) > 10 * 1000) {
119 counter++;
120 bool ping = (counter % 2);
121 int i = webSocket.connectedClients(ping);

15

122 USE_SERIAL.printf("%d Connected websocket clients ping: %d\n", i,
ping);

123 last_10sec = millis();
124 }
125

126

127 // Check if it's time to sample ADC data based on SPS
128 unsigned long currentMillis = millis();
129

130 if (currentMillis - lastSampleTime >= sampleInterval) {
131 // Read ADC and store it in buffer
132 adcBuffer[sampleIndex] = analogRead(A0);
133 sampleIndex++;
134

135 // Reset buffer and send data every 333ms
136 if (sampleIndex >= sps) {
137 sendSamplesThroughWebSocket(adcBuffer , sps);
138 sampleIndex = 0; // Reset buffer index
139 }
140

141 lastSampleTime = currentMillis;
142 }
143

144 // Send data every 333ms
145 if (currentMillis - previousMillis >= sendInterval) {
146 if (sampleIndex > 0) {
147 sendSamplesThroughWebSocket(adcBuffer , sampleIndex);
148 sampleIndex = 0; // Reset buffer index
149 }
150 previousMillis = currentMillis;
151 }
152 }
153

154 // Function to send ADC samples via WebSocket
155 void sendSamplesThroughWebSocket(int *samples, int count) {
156 // Create a buffer to hold raw data (binary format)
157 uint8_t buffer[count * sizeof(int)];
158 memcpy(buffer, samples, count * sizeof(int)); // Copy ADC samples to

buffer
159

160 // Send the buffer as a binary message over WebSocket
161 webSocket.broadcastBIN(buffer, count * sizeof(int));
162 }

16

Web Development for UI

HTML

1 <html>
2 <head>
3 <meta charset="UTF-8">
4 <meta name="viewport" content="width=device-width, initial-scale=1.0">
5 <meta http-equiv="X-UA-Compatible" content="ie=edge">
6 <title>ECG Machine Mejor Project </title>
7 </head>
8 <body>
9 <h1> Micro DSO</h1>

10 <canvas height="200" id="graph"></canvas>
11 <div class="position-control">
12 <button onclick="autoScale()">Auto Scale</button>

13 TIME/DIV
14 <div>-<input type="range" oninput="time_per_div = (this.value

/100)*6" min="1" max="99" value="99" />+</div>
15 POSITION HORIZONTAL
16 <div�><input disabled type="range" oninput="time_per_div = 31 -

this.value" min="1" max="30" value="30" �/></div>
17 VOLT/DIV
18 <div>-<input type="range" oninput="volt_per_div = 0.003 * this.

value" min="15" max="45" value="1" />+</div>
19 POSITION VERTICAL
20 <div>\&\#9650;<input type="range" oninput="positionY = -this.value

" min="-200" max="200" value="30" />\&\#9660;</div>
21 </div>
22 </body>
23 </html>
24 %

CSS

1 \#canvas {
2 box-sizing: border-box;
3 }
4 body {
5 margin: 0;
6 }
7 .position -control {
8 text-align: center;
9 }

10 .position -control div {
11 display: flex;

17

12 justify-content: center;
13 margin: 10px;
14 }
15 .position -control input[type="range"] {
16 width: 80%;
17 }
18

19 .notify-container {
20 width: 100%;
21 height: auto;
22 max-height: 230px;
23 overflow: scroll;
24 box-sizing: border-box;
25 display: flex;
26 flex-direction: column;
27 align-items: center;
28 position: fixed;
29 top: 10px;
30 left: 0;
31 pointer-events: none;
32 }
33 .notify-container >div {
34 max-width: 400px;
35 margin: 10px;
36 border-radius: 5px;
37 text-align: center;
38 padding: 10px 20px;
39 background -color: \#eef;
40 color: \#00f;
41 position: relative;
42 box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
43 transition: transform .5s ease;
44 pointer-events: auto;
45 }
46 .notify-container >div:hover {
47 transform: translateY(10%);
48 }
49 .notify-container >div>.notifyClose {
50 position: absolute;
51 right: 5px;
52 bottom: 25%;
53 font-weight: 1000;
54 }

18

JavaScript

1 //Self designed lightweight notification
2 (()=>{
3 var container = document.createElement('div');
4 container.className = "notify-container";
5 document.body.appendChild(container);
6 document.notify = (r,a,j,u) => {
7 var notifyDiv = document.createElement('div'),
8 notifyClose = document.createElement('div');
9 notifyDiv.innerText = r;

10 notifyClose.className = "notifyClose";
11 notifyClose.innerText = "×";
12 notifyDiv.appendChild(notifyClose);
13 if(a == "error") notifyDiv.style = 'background -color:#fdd;color:

f00;';
14 if(a == "warning") notifyDiv.style = 'background -color:#ffc;color:

f00;';
15 if(a == "success") notifyDiv.style = 'background -color:#cfc;color

:#080;';
16 var stayTime = (j||(container.innerText.length + t.toString().

length)*2e2);
17 setTimeout(()=>{notifyDiv.remove()},stayTime)
18 notifyClose.onclick = function(){notifyDiv.remove()};
19 container.appendChild(notifyDiv);
20 }
21 })();
22

23 const wSocket = new WebSocket('ws://172.217.28.1:81');
24 //const wSocket = new WebSocket('ws://localhost:8765');
25 wSocket.onopen = function() {
26 document.notify("WebSocket: Connection established!",'success');
27 wSocket.send(1)
28 };
29 wSocket.onmessage = function(event) {
30 var incomingData = eval(event.data);
31 var arr = String.fromCharCode.apply(null, new Uint8Array(incomingData))

;
32 console.log(arr);
33 data_plot.push(...incomingData);
34 data_plot.splice(0, incomingData.length);
35 wSocket.send(200);
36 };
37 wSocket.onerror = function(error) {
38 document.notify("WebSocket: Error " + error,"error");
39 };

19

40 wSocket.onclose = function() {
41 document.notify("WebSocket: Connection closed",'warning');
42 };
43

44 const canvas = _("#graph");
45 const ctx = canvas.getContext("2d");
46 var time_per_div = 6;
47 var _AnimationFrame;
48 var volt_per_div = 0.03
49 var axis_lebel_spaceX = 20;
50 var axis_lebel_spaceY = 20;
51 var positionX = 0;
52 var positionY = 0;
53 var pointerX = axis_lebel_spaceX;
54 var pointerY = axis_lebel_spaceY;
55 canvas.width = screen.width;
56

57 //Auto scale (in-progress)
58 function autoScale(){
59 var scaleFactor = (canvas.height/2)/(Math.max(...data_plot) - Math.min

(...data_plot));
60 var scalingPosition = (Math.min(...data_plot)+((Math.max(...data_plot)

- Math.min(...data_plot))/2))*scaleFactor;
61 //console.log(scalingPosition)
62 positionY = scalingPosition -100 // sub 100 hardcoded for testing

purpose ... must be a flexible solution
63 volt_per_div = scaleFactor
64 return scaleFactor;
65 }
66 //autoScale()
67

68 var sqr_sum = 0;
69 for(var i in data_plot){
70 sqr_sum += Math.pow(data_plot[i],2)
71 }
72 var data_Vrms = Math.sqrt(sqr_sum/data_plot.length);
73 var data_Vavg = data_plot.reduce((acc, curr) => acc + curr, 0) / data_plot.

length;
74 var data_Vmax = Math.max(...data_plot);
75 var data_Vmin = Math.min(...data_plot);
76 var data_Vpp = data_Vmax - data_Vmin;
77 console.log("Vrms :::",data_Vrms)
78 console.log("Vavg :::",data_Vavg);
79 console.log("Vmax :::",data_Vmax)
80 console.log("Vmin :::",data_Vmin)
81 console.log("Vp-p :::",data_Vpp)

20

82

83 addEventListener('resize', () => {
84 canvas.width = screen.width;
85 data_plot.length = canvas.width*time_per_div;
86 })
87 function draw() {
88 ctx.clearRect(0, 0, canvas.width, canvas.height);
89 drawGraphAxis();
90

91 ctx.beginPath();
92 ctx.moveTo(axis_lebel_spaceX , axis_lebel_spaceY);
93

94 for (var I in data_plot) {
95 i = Number(I);
96 //if (i % 5) continue; // Skip every other index for performance
97 var plot_x = Math.round(i / time_per_div) + axis_lebel_spaceX;
98 var plot_y = canvas.height - Math.round(data_plot[i] * volt_per_div

) + axis_lebel_spaceY + positionY;
99

100 ctx.lineTo(plot_x, plot_y);
101

102 // Only for Testing perpose
103 /*if (graphPicks.indexOf(i) !== -1) { // Mark every pick
104 ctx.fillText(i, plot_x, plot_y);
105 }*/
106

107

108 if (!(i % (100 * time_per_div))) { // Mark every 100th data point
109 ctx.fillText(i, plot_x, axis_lebel_spaceY / 2);
110 }
111

112 if (plot_x > canvas.width) break; // Stop if exceeding canvas
width

113 }
114

115 ctx.lineWidth = 1;
116 ctx.strokeStyle = 'red';
117 ctx.stroke();
118

119 _AnimationFrame = requestAnimationFrame(draw);
120 }
121

122 draw();
123

124 // Function to create grid on canvas
125 function drawGraphAxis() {

21

126 ctx.lineWidth = 0.1;
127

128 // Vertical grid lines
129 for (var i = 0; i < canvas.width; i += canvas.width / time_per_div) {
130 ctx.beginPath();
131 ctx.moveTo(i + axis_lebel_spaceX , axis_lebel_spaceY / 2);
132 ctx.lineTo(i + axis_lebel_spaceX , canvas.height + axis_lebel_spaceY

);
133 ctx.strokeStyle = '#000';
134 ctx.stroke();
135 }
136

137 // Horizontal grid lines
138 for (var i = 0; i < canvas.height - axis_lebel_spaceY; i += 30) {
139 ctx.beginPath();
140 ctx.moveTo(axis_lebel_spaceX , i + axis_lebel_spaceY);
141 ctx.lineTo(canvas.width + axis_lebel_spaceX , i + axis_lebel_spaceY)

;
142 ctx.fillText(i, 0, i + axis_lebel_spaceY);
143 ctx.strokeStyle = '#000';
144 ctx.stroke();
145 }
146

147 // Draw axis pointers
148 ctx.lineWidth = 1;
149

150 // Vertical pointer line
151 ctx.beginPath();
152 ctx.moveTo(pointerX , 0);
153 ctx.lineTo(pointerX , canvas.height);
154 ctx.strokeStyle = '#00f';
155 ctx.stroke();
156

157 // Horizontal pointer line
158 ctx.beginPath();
159 ctx.moveTo(0, pointerY);
160 ctx.lineTo(canvas.width, pointerY);
161 ctx.strokeStyle = '#00f';
162 ctx.stroke();
163

164 // Display pointer coordinates
165 ctx.fillText(
166 Math.round((pointerX - axis_lebel_spaceX) * time_per_div) + "," + (

canvas.height - pointerY),
167 canvas.width / 2, axis_lebel_spaceX + 10
168);

22

169 }
170

171 /*
172 /
173 / TO BE Modified for mouse compatiblity
174 /
175 */
176 // x & y axis on touch
177 //canvas.addEventListener("mousemove", pointerEvent)
178 canvas.addEventListener("touchmove", pointerEvent)
179 function pointerEvent() {
180 event.preventDefault();
181 const touch = event.type == "touchmove"?event.touches[0]:event;
182 const x = Math.round(touch.clientX - canvas.offsetLeft);
183 const y = Math.round(touch.clientY - canvas.offsetTop);
184

185 x > 0 && x < canvas.width-axis_lebel_spaceX && (pointerX = (event.type
== "touchmove"?canvas.width-x:x));

186 y > 0 + axis_lebel_spaceY && y < canvas.height && (pointerY = y);
187 };
188

189 function _(o){
190 return document.querySelector(o);
191 }
192

193 /*TO DO's
194 -include time, volt mul factor -- in ESP API
195 -fix y axis scale
196 - optimize code (make it flexible for wide range of application)
197 - auto scale (max - min && find volt_per_div)
198 - pack it in a Class
199

200 */
201

202 // For Testing
203 // positionY = 200
204 // time_per_div = 5.9

23

References

[1] Parker, J. (2019). Introduction to Bioinstrumentation: Fundamentals and Ap-

plications. Pearson Education.

[2] Analog Devices. (2014). AD8232 Data Sheet. Retrieved from https:

//www.analog.com/media/en/technical-documentation/data-sheets/

AD8232.pdf

[3] Arias, R. A., & Llamas, J. S. (2016). Portable Electrocardiogram (ECG)

for Remote Health Monitoring. Journal of Medical Systems, 40(12), 271-285.

https://doi.org/10.1007/s10916-016-0620-9

[4] Espressif Systems. (2015). ESP8266EX Datasheet. Retrieved from

https://www.espressif.com/sites/default/files/documentation/

0a-esp8266ex_datasheet_en.pdf

[5] Kiani, M. (2018). ECG Signal Processing, Classification, and Interpretation:

A Comprehensive Review. Computers in Biology and Medicine, 59, 125-141.

https://doi.org/10.1016/j.compbiomed.2015.11.002

[6] Wang, J., & Xu, X. (2017). Design and Implementation of Wireless ECG Mon-

itoring System Based on Wi-Fi. Journal of Medical Engineering & Technology,

41(4), 239-244. https://doi.org/10.1080/03091902.2017.1362821

[7] Mozilla Developer Network. (2024). WebSocket API. Retrieved from https:

//developer.mozilla.org/en-US/docs/Web/API/WebSocket

[8] Tayal, A., & Soni, R. (2018). Signal Filtering and Noise Reduction in ECG

Systems: A Comparative Study. Bioengineering, 5(4), 88-98. https://doi.

org/10.3390/bioengineering5040088

[9] Arduino. (2023). Arduino IDE: Integrated Development Environment. Re-

trieved from https://www.arduino.cc/en/software

24

https://www.analog.com/media/en/technical-documentation/data-sheets/AD8232.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD8232.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD8232.pdf
https://doi.org/10.1007/s10916-016-0620-9
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://doi.org/10.1016/j.compbiomed.2015.11.002
https://doi.org/10.1080/03091902.2017.1362821
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://doi.org/10.3390/bioengineering5040088
https://doi.org/10.3390/bioengineering5040088
https://www.arduino.cc/en/software

	Candidate’s Declaration
	Certificate
	Abstract
	Acknowledgement
	List of Figures
	List of Symbols, Abbreviations
	 INTRODUCTION
	BACKGROUND
	PROPOSED DESIGN
	ELECTRODES
	AMPLIFIER
	NOISE & FILTER
	DSO
	WIFI

	Software Development
	Microcontroller programming Algorithm
	Web Development Algorithm

	Implementation and Results
	Future Scope
	Artificial Intelligence (AI) Features
	Multi-Lead ECG Option
	Improving Signal Quality
	Data Logging
	Remote Monitoring
	Customizable Features
	Support for Rural Healthcare Programs

	CONCLUSION
	Appendices
	References

